The Effect of Inertia on the Flow and Mixing Characteristics of a Chaotic Serpentine Mixer

نویسندگان

  • Tae Gon Kang
  • Patrick D. Anderson
چکیده

As an extension of our previous study, the flow and mixing characteristics of a serpentine mixer in non-creeping flow conditions are investigated numerically. A periodic velocity field is obtained for each spatially periodic channel with the Reynolds number (Re) ranging from 0.1 to 70 and the channel aspect ratio from 0.25 to one. The flow kinematics is visualized by plotting the manifold of the deforming interface between two fluids. The progress of mixing affected by the Reynolds number and the channel geometry is characterized by a measure of mixing, the intensity of segregation, calculated using the concentration distribution. A mixer with a lower aspect ratio, which is a poor mixer in the creeping flow regime, turns out to be an efficient one above a threshold value of the Reynolds number, Re = 50. This is due to the combined effect of the enhanced rotational motion of fluid particles and back flows near the bends of the channel driven by inertia. As for a mixer with a higher aspect ratio, the intensity of segregation has its maximum around Re = 30, implying that inertia does not always have a positive influence on mixing in this mixer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar mixing of high-viscous fluids by a cylindrical chaotic mixer

Laminar mixing of glycerin in a chaotic mixer is carried by means of the blob deformation method. The mixer was a cylindrical vessel with two rotational blades which move along two different circular paths with a stepwise motion protocol. The flow visualization was performed by marking of the free surface of the flow with a tracer. The effects of controlling parameters such as rotational speed ...

متن کامل

A chaotic serpentine mixer efficient in the creeping flow regime: from design concept to optimization

Motivated by the three-dimensional serpentine channel (Liu et al. in J Microelectromech Syst 9:190–197, 2000), we introduce a chaotic serpentine mixer (CSM) and demonstrate a systematic way of utilizing a mapping method to find out an optimal set of design variables for the CSM. One periodic unit of the mixer has been designed to create two streamlines portraits crossing each other. As a prelim...

متن کامل

investigation of mercaptan removal from Kerosene using passive mixing tools: Experimental study and CFD modeling

Abstract In this work, the role of appropriate mixing for mercaptan removal from Kerosene using caustic soda has been investigated in the pilot scale. Static mixer at different condition has been used as a passive mixing tool to achieve proper mixing and consequently high performance of mercaptan removal. Two lengths of static mixer including 20 and 40 cm as well as two pitches 1 and 3 m...

متن کامل

Design and Development of Mathematical Model for Static Mixer

A numerical model for simulating Residence Time Distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to improve the understanding of static mixers. The results of this model is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process i...

متن کامل

Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.

To achieve high mixing efficiency in microfluidic devices, complex designs are often required. Microfluidic devices have been evaluated with light and confocal microscopy, but fluid-flow characteristics at different depths are difficult to separate from the en face images produced. By using optical coherence tomography (OCT), an imaging modality capable of imaging 3D microstructures at micromet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014